
1

2003 FAA National Software Conference
Unreached Code

Robin Sova

1

BREAKOUT SESSION
“Unreached Code Brainstorm”

to discuss

Unreached/Dead/Deactivated/Defective/… Code

FAA National Software Conference
Reno, NV

September 17, 2003

Facilitator - Robin Sova
Phone 816-329-4133, robin.sova@faa.gov

FAA Small Airplane Directorate, Kansas City, MO

2

Brainstorm – Why & How?
• Unreached is not defined in RTCA/DO-178B,

thus Deactivated is often used in its place.
• Brainstormed ideas will be considered in the

development of a *CAST Position Paper.
• Concentrate on the topic, defining the issues,

discussing the terminology, and establishing a
baseline of understanding.

* Certification Authorities Software Team (international representation)

2

2003 FAA National Software Conference
Unreached Code

Robin Sova

3

Brainstorm Session - Approach
• Assumptions
• Scope the Issue
• Definitions
• Thoughts/Discussions?
• Understandings/Agreements?

4

Assumptions

• In developing any regulatory or other forms
of guidance regarding this topic, we should
adhere closely to the DO-178B definitions.

• However, we should have the common sense
to recognize any definition ambiguities or
shortcomings and accept other Standards’
definitions when necessary and appropriate.

3

2003 FAA National Software Conference
Unreached Code

Robin Sova

5

Scope the Issue

• Unreached/Unreachable Code (a difference?)
• Unexecutable Code
• Defective Code (by requirement, design, code)
• Dead Code
• Deactivated/Disabled Code (a difference?)
• Defensive Programming & Exception

Handling Code

6

Definitions
• Baseline (from RTCA/DO-178B)
• Related to topic (also DO-178B)
• Other Standards
• Proposed

4

2003 FAA National Software Conference
Unreached Code

Robin Sova

7

Baseline/DO-178B: Software

• (Glossary) “Computer programs and,
possibly, associated documentation and data
pertaining to the operation of a computer
system.”

8

Baseline/DO-178B: Code

• (Glossary) “The implementation of particular
data or a particular computer program in a
symbolic form, such as source code, object
code or machine code.” {RS – Definition covers all
representations of program logic/data, from high level source
thru assembly to machine language. It implies a difference in
form between source code (i.e., a high level or assembly
language input to a compiler/assembler per next DO-178B
definition), object code, and machine code.}

5

2003 FAA National Software Conference
Unreached Code

Robin Sova

9

Baseline/DO-178B: Source Code

• (Glossary) “Code written in source languages,
such as assembly language and/or high level
language, in a machine-readable form for
input to an assembler or a compiler.”

10

Baseline/DO-178B: Object Code
• (Glossary) “A low-level representation of the

computer program not usually in a form directly
usable by the target computer but in a form
which includes relocation information in
addition to the processor instruction
information.” {RS – Assembly language code (mnemonics)
or assembled code (binaries)? 1) both are lower-level, 2) neither
is directly usable by a target computer until assembled and
linked, 3) both contain processor instructions in one form or
another, 4) but only assembled code includes relative relocation
information; thus, this definition would exclude assembly
language code.}

6

2003 FAA National Software Conference
Unreached Code

Robin Sova

11

Baseline/DO-178B: Compiler

• (Glossary) “Program that translates source
code statements of a high level language,
such as FORTRAN or Pascal, into object
code.” {RS – This definition leaves open the possibility
that assembly language code might be considered object
code since it could be the product of a compiler translating
from a high level source language. However, assembled
(binary) code is the usually expected output of a compiler, as
opposed to assembly language code.}

12

Baseline/DO-178B:
Executable Object Code

• (Section 11.12) “The Executable Object
Code consists of a form of Source Code that
is directly usable by the central processing
unit of the target computer and is, therefore,
the software that is loaded into the hardware
or system.” {RS – Somewhat ambiguous to state this is a
“form of Source Code” (based on the earlier definition
implying assembly or higher level language status) but it
does correctly imply that EOC is synonymous with compiled
or assembled, linked/loaded, machine code since it is
“directly usable by the central processing unit...”}

7

2003 FAA National Software Conference
Unreached Code

Robin Sova

13

Related/DO-178B:
Deactivated Code

• (Glossary) “Executable object code (or data)
which by design is either (a) not intended to be
executed (code) or used (data), for example, a
part of a previously developed software
component, or (b) is only executed (code) or used
(data) in certain configurations of the target
computer environment, for example, code that is
enabled by a hardware pin selection or software
programmed options.” (RS – Definition addresses only
Executable Object Code level, regardless of deactivation at
source, assembly, or object levels.)

14

Related/DO-178B: Dead Code
• (Glossary) “Executable object code (or data)

which, as a result of a design error cannot be
executed (code) or used (data) in a operational
configuration of the target computer environment
and is not traceable to a system or software
requirement. An exception is embedded
identifiers.” {RS – Unreachable code, not required or able to
be executed, is the only type of code meeting this DO-178B
definition. Therefore, code intended to execute (i.e., there is a
requirement), yet which doesn’t due to a design/coding error, is
not dead but is unreachable due to its defective nature.}

8

2003 FAA National Software Conference
Unreached Code

Robin Sova

15

Other Standards: Machine Code

• (IEEE) “Computer instructions and
definitions expressed in a form [binary
code] that can be recognized by the CPU of
a computer. All source code, regardless of
the language in which it was programmed,
is eventually converted to machine code.
Syn: object code.” {RS – This definition implies by
synonym that object code is machine code (i.e., assembled
code) and therefore, that assembly language code is not
object code.}

16

Other Standards: Object Code

• (NIST) “A code expressed in machine
language [“1”s and “0”s] which is normally
an output of a given translation process that
is ready to be executed by a computer. Syn:
machine code. Contrast with source code.
See: object program.” (RS – This definition also
states directly by definition and indirectly by synonym that
object code is the product of an assembler/compiler and
therefore, assembly language code is not object code.)

9

2003 FAA National Software Conference
Unreached Code

Robin Sova

17

Other Standards: Object Program

• (IEEE) “A computer program that is the output
of an assembler or compiler.” (RS – By stating that
an object program is the product of an assembler or compiler,
it seems to imply that assembly language code cannot be
considered object code since it is the input to an assembler.)

18

Proposed: Unexecutable Code
• (RS) “Code (of any form) which for any reason

will not lead to execution, whether intended or
not by requirements, or due to design or coding
errors, or due to language, compiler or assembler
optimizations.”

• Implied by 6.4.4.3: is due to requirements or test
shortcomings, or Dead or Deactivated code.

• Unexecutable can be decomposed at next level to
“Dead” (per DO-178B – has no requirement) and
“Unreachable” (proposed – a requirement exists).

10

2003 FAA National Software Conference
Unreached Code

Robin Sova

19

Proposed: Unreachable Code
• (RS) “Code (of any form) that has a

requirement to exist but will not lead to
execution, either intentionally by
requirement or unintentionally due to design
or coding errors. At runtime, in Executable
Object Code form, it is unreached.”

20

Proposed: Unreachable (cont’d)

• Unreachable could be decomposed at the next
lower level into 4 code categories:

– Deactivated (EOC per DO-178B definition)
– Defective (erroneous code, may be or may

cause unreachable code)
– Disabled (defective code that is purposely

made unreachable as a temporary fix)
– Defensive Programming & Exception

Handling

11

2003 FAA National Software Conference
Unreached Code

Robin Sova

21

Proposed: Defective Code

• (RS) “Code (of any form) that does not
satisfy its requirements and/or contains
errors; it may or may not have been
verified or had structural coverage
achieved.”

22

Proposed: Disabled Code

• (RS) “Defective code (of any form) which
has intentionally been made unreachable at
some level, thus being rendered
unexecutable.”

12

2003 FAA National Software Conference
Unreached Code

Robin Sova

23

Proposed: Defensive Programming
& Exception Handling Code

• Is there a problem here which needs addressing?

24

Definitions - Big Picture
UNEXECUTABLE CODE

(code of any form, not able to execute for any reason)

DEAD CODE
(Executable Object, no requirement exists)

TRULY DEAD
(per DO-178B

definition)

UNREACHABLE CODE
(a valid functional requirement exists)

Delete Dead code
(per DO-178B)

FALSELY DEAD
(i.e., requirement for inactive
code was omitted or incorrect)

Add missing or fix
bad requirement

by REQUIREMENT

by DESIGN

by ERROR

DEACTIVATED
(Executable Object)

DEFENSIVE PROGRAMMING
& EXCEPTION HANDLING

Future
Growth

Unused
Libraries

Option/Pin
Selectable

Design

Requirement

Code

DEFECTIVE

DISABLED
(band-aid fix)

Follow DO-178B guidance Fix it!

DO-178B DEFINED

PROPOSED TERMS

Suggested Activities

Diagram Key:

EXPLANATORIES

13

2003 FAA National Software Conference
Unreached Code

Robin Sova

25

Thoughts/Discussion?

26

Understandings/Agreements?

14

2003 FAA National Software Conference
Unreached Code

Robin Sova

27

Thank You for
Your Attendance and

Participation!

28

Following slides are for backup
and discussions only; not to be

printed or distributed as
handouts or included with

meeting minutes except when
used during the session.

15

2003 FAA National Software Conference
Unreached Code

Robin Sova

29

Example Scenario-Unreachable
Requirements: 1) Count & Print from 0-1000, inclusive, by 2’s

2) Do remaining task

** Initialize counter to its first value of “zero” and then print
counter = 0
print counter

*** Increment counter by 2’s up to 1000, printing each value
do until counter = 1001

counter = counter + 2
print counter

end do
*** Unreachable code follows because the counter attains values of 1000
*** & 1002 but never 1001, so stuck in infinitely increasing counter loop

do remaining task
end do

(Requirements OK; design/coding error in meeting requirement #1 causes
infinite counting loop and makes requirement #2 code Unreachable.)

30

Example Scenario-Dead
Requirement: 1) Count & Print from 0-1000, inclusive, by 2’s

** Initialize counter to its first value of “zero” and then print
counter = 0
print counter

*** Increment counter by 2’s up to 1000, printing each value
do until counter = 1000

counter = counter + 2
print counter

end do
*** Dead code follows because of goto & no existing requirement

go to end
do remaining task
end do

end

(Requirement #1 is OK and is met; go to causes skipping of code block which
has no corresponding requirement anyway, therefore it is Dead code.)

16

2003 FAA National Software Conference
Unreached Code

Robin Sova

31

Example Scenario-Deactivated
Requirements: 1) Count & Print from 0-1000, inclusive, by 2’s

2) Build in future option for remaining task

** Initialize counter to its first value of “zero” and then print
counter = 0
print counter

*** Increment counter by 2’s up to 1000, printing each value
do until counter = 1000

counter = counter + 2
print counter

end do
*** Deactivated code follows because of future growth option requirement

go to end
do remaining task
end do

end
(Requirements are OK, code meets both; goto prevents execution of future
option code which is required for growth, therefore it is Deactivated code.)

32

Example Scenario-Defective
Requirement: 1) Count & Print from 0-1000, inclusive, by 2’s

** Initialize counter to its first value of “zero” and then print
counter = 0
print counter

*** Increment counter by 2’s up to 1000, printing each value
do until counter = 1001

counter = counter + 2
print counter

end do
*** Defective code in the counter above causes Unreached code to follow
*** due to seeing values of 1000 & 1002 but never 1001, stuck in infinite loop

do remaining task
end do

(Requirement is OK; design error in meeting requirement causes infinite counting loop
preventing reaching the unrequired code, therefore it is Defective code.)

17

2003 FAA National Software Conference
Unreached Code

Robin Sova

33

Example Scenario-Disabled
Requirement: 1) Count & Print from 0-1000, inclusive, by 2’s

** Initialize counter to its first value of “zero” and then print
counter = 0
print counter

*** Increment counter by 2’s up to 1000, printing each value
go to end
do until counter = 1001

counter = counter + 2
print counter

end do
end

(Requirement is OK; design/coding error (i.e., defective code) in meeting requirement
causes infinite counting loop, which is avoided by inserting goto/end thus creating
unrequired deactivated defective code block, or as now proposed to be called,
Disabled code. Obviously, the original requirement is not met either.)

34

Proposed: Activated Code
• (WS) “Airborne code that has been fully

verified and is active in the aircraft system
configuration.” (RS – I would recommend changing to
“Airborne Executable Object Code which by design is
intended to be executed or used, has been fully verified, and is
active in the aircraft system configuration.”)

18

2003 FAA National Software Conference
Unreached Code

Robin Sova

35

Proposed: Defective Code

• (WS) “Code which it is known, does not
satisfy its requirements and/or contains
errors, may or may not have been verified
and structural coverage achieved, but can be
“disabled” for a specific aircraft system
configuration.”(RS – suggest deleting last portion
since not all defective code is disabled; included in
disabled definition.)

36

Proposed: Unreachable Code
• (WS) “Airborne code inserted by the

computer that has not been fully R-B tested
nor structural coverage achieved but has
been analyzed and determined to meet its
requirements and be harmless to leave in the
airborne build.”

19

2003 FAA National Software Conference
Unreached Code

Robin Sova

37

My Thoughts – Dead Code
• Based on DO-178B definition stating that dead code “is not

traceable to a system or software requirement…a result of a
design error” and section 6.4.4.3.c statement that “Dead…code
should be removed and an analysis performed to assess the
effect and need for reverification” - are there any good reasons
or justification for keeping truly dead code?

– One bad reason for leaving dead code in is performance related; the
developer is not really 100% confident that the code is dead (e.g., due to
spaghetti code nature) and its removal may lead to future problems.

– Another bad reason is cost/schedule based; the developer may be 100%
confident of “code deadness” but does not want to incur the added
expense/time penalties for analysis and reverification activities required
as a result of removing what they truly believe is benign.

38

My Thoughts – Pt./Counter Pt.
One Proposed Approach - if activation of dead code is determined to have no detrimental
safety effects, yet would be difficult to remove, then it may be allowed to remain.

Point - I’m not sure this position can be logically justified; i.e., it is illogical to accept the
“safe outcome determination” of an analysis based on the “unintentional activation of dead
code” when that activation itself implies failure of other code within the program, thus
making the results of the analysis questionable. Therefore, if code is truly dead, whether
or not there are safety/convenience reasons to keep it, there is no “logical” way to justify
keeping it. For example, if analysis says its execution is unsafe - it must be removed;
however, if analysis says execution would be safe, yet depends on accepting the
predictability of the result based on a “presumably dead code” process executing – then
removal would be the only guarantee against potentially detrimental safety effects.

Counterpoint – since we’re assuming correct performance of the “live” code, without the
presence of the dead code, then we cannot penalize the results of the safety analysis by
now assuming the live code has failed in the presence of the dead code.

Conclusion – if analysis shows truly dead code would be safe even if executed, then it’s
permissible to keep the dead code.

20

2003 FAA National Software Conference
Unreached Code

Robin Sova

39

My Thoughts – Disabled Code
• With respect to allowing disabled defective code to exist

in an operational application: I do not think “broken” is
a good case for claiming “deactivation” since the
acknowledged state of brokenness implies a “known
unknown” aspect! It’s risky enough in software
development that we must accept the existence of
unknown unknowns in code via the “warm fuzzy of
process assurance,” but intentionally accepting a “bad
known unknown” seems to be pushing our luck with a
potential for dangerous consequences.

40

Solutions? (suggested)

3. Safety impact if Activated?

1. Identify Unreached Code (using Table 1)

START

2. Identify Effects of Activation

4. Allowed to Retain Dead Code, but Re-evaluate Impact at
Next Modification

5. Unit Containing Unreached Code
Modified?

Re-evaluate Effects After Changes to Other Parts of Code

Remove Unreached Code

END

No

No

Yes

No

Yes

Yes

No

Note: The effort to identify the effects of activation includes determination of all of the activation
mechanisms. This information is needed to evaluate the impacts of future modifications

Cat 1,2,3,4, or 6? Follow Approach described in Table 1Yes END

Unreached code
Easily removed?

21

2003 FAA National Software Conference
Unreached Code

Robin Sova

41

Solutions? (suggested-Table 1)
Category of unreached code Approach Notes

#1. Code can be tested by requirements based tests at
a lower level of integration, such as module tests

Test at the lower level of integration It is important that all tests should be requirements based.

#2. Shortcomings in requirements based test cases or
test procedures

•Follow the guidance in DO-178B 6.4.4.3.a.
•Investigate need for adapting the development process to prevent
this in the future

Basically, correct/enhance test cases/procedures

#3. Inadequacies in software requirements •Follow the guidance in DO-178B 6.4.4.3.b.
•Investigate need for adapting the development process to prevent
this in the future

Basically, correct requirements

#4. Caused by incorrect development process •Correct development process
•Check whether this was a problem in previous products that used
this process
•Re-enter corrected development process, which should remove
the unreached code

In the DO-178B definition of dead code, it is not clear whether
"design error" refers to a flaw in the development process, or an
incorrect application of the development process. This is the
difference between # 4 and # 5 in this table.

#5. Caused by incorrect application of the
development process

•Apply proper development process, which should remove the
unreached code
•Check whether this was a problem in previous products
•Investigate need for adapting the development process to prevent
this in the future

#6. De-activated code •Follow the guidance in DO-178B 6.4.4.3.d. Basically, show that it can not be inadvertently executed; or test
the code using the requirements for the configuration in which
the code is activated.May be there to address future expansion.
Software included for future expansion is typically handled as
deactivated code.

#7. Other causes ?? ?? Examples ?? Defensive programming? Although I use the
example myself, I would expect that at some level of
integration (or lack of integration) the code can be tested.
Inability to implement certain hardware failures.

